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ABSTRACT 
MPEG-4 Fine Granularity Scalability (FGS) provides bandwidth 
adaptation and error resilience features for streaming applications. 
In this paper. by estimating the required computational power for 
FGS in a video encoding system, an efficient FGS implementation 
method is exploited. With the proposed hardware-oriented 
optimization approaches, a hardwired FGS block-level processing 
core is proposed to provide a cost-effective solution to FGS 
implementation. The proposed hardware core can support FGS 
profile level 5 ,  frame size 720x516. 30Hz. for real-time streaming 
applications at 54 MHz. 

1. Introduction 
Multimedia delivery over Internet is an emerging application that 
needs lo serve numerous users over network using various access 
media with different available bandwidth. In addition, suffering 
from unavoidable packet loss. which results from the best-effon 
nature for QoS of the Internet, bandwidth adaptation and error 
resilience are two key techniques to stream multimedia data over a 
range of bit rate on Internet. MPEG-4 Fine Granularity Scalability 
(FGS) can easily provide these two features and is suitable for 
streaming applications [11[21. To further improve visual quality of 
FGS video, frequency weighting that uses different weighting for 
different frequency components is provided [Z]. The streaming 
content can be either pre-coded video or live video. Due to the 
charactenstic of separate coding and transmission procedures for 
FGS bitstream, it is easy to handle with the pre-coded video. The 
encoding system needs not finish encoding in real-time but just 
before the server to dispatch the coded bitstream upon users’ 
requests. With coded FGS bitstream, the required computational 
power for server to perform rate allocation and adaptation is low. 
However, as to streaming live video, the streaming system should 
perform both coding and bitstream delivery in time. The required 
computational power is huge for video encoding and further raised 
when offering additional FGS function. There are many state-of- 
the-art MPEG-4 encoderlcodec SOC chip to accelerate the 
encoding procedures with softwarelhardware co-design and co- 
optimization [31[41, which are ready for the real-time applications. 
Dedicated FGS accelerating core should be also implemented for 
specific streaming applications. Before FGS function is integrated 
into the encoding system, the most efficient implementation 
method for it should be exploited to achieve optimal system 
performance with least implementation cost. 
In this paper. the required computational power for FGS in a video 
encoding system will be evaluated in section 2. Then detailed FGS 
coding flow will also be analyzed and modified with 
hardwardsoftware optimization in section 3 to adapt FGS function 
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into encoding system more efficiently. Then a cost-effective block- 
level hardware design for FGS encoder will be proposed in section 
4.The conclusions will be drawn in section 5. 

2. FGS Functional Descriptions 
The basic idea of FGS is to code a video sequence into two layers. 
One is the base layer whose bit-rate is set at the least available 
bandwidth of the channel. Ideally, the base layer is received and 
decoded completely at the decoder’s side to give the basic quality 
of the coded video. Another one is the enhancement that is ended 
to improve the video quality of the base layer. In FGS coding 
scheme, to achieve the fine-grained scalability of the enhancement 
layer, bit-plane coding method is used. With bit-plane coding, first 
the residues between the DCT coefficients and the inverse 
quantized ones of an 8x8 block are taken and scanned in  zigzag 
order. Then. instead of being coded word-by-word, these residues 
are processed in bit-plane order, i.e. bits at the same significant 
position form one bit-plane from the MSB of this block to the LSB. 
In each bit-plane, only one and zero are left and run-length coding 
is performed to form the (RUN, EOP) symbols. where RUN means 
the number of consecutive zero before a one and EOP indicates the 
last one of a bit-plane. These symbols are further VLC-coded and 
finally packed into one enhancement bitstream from higher bit- 
plane to lower bit-plane. So, this enhancement bitstream can be 
decoded to recover the quantization error of the DCT coefficients 
from MSB, which makes more contributions to recover error. to 
LSB. Besides, it can be truncated at any point since this results in 
only some data loss in lower bit-plane. It can be referred to [21 for 
more details of the FGS functionality. 

2.1 Profiling Results 
FGS can be implemented using either software or dedicated 
hardware. So. before adding FGS function into encoding system. 
from system viewpoint, we must decide what k n d  of 
implementation is most suitable for FGS by estimating its required 
computational power. Table 1 shows the instruction level profiling 
of FGS in an MPEG-4 encoding system using MPEG-4 VM 
software [SI. The profiling condition is for foreman sequence, CIF 
format and 30 Hz and the profiling data can be divided into two 
parts, one is the required instruction analysis and another is for 
required memory bandwidth. 
It is shown that when FGS function integrated into an MPEG-4 
encoder targeting real-time applications, it consumes more than 2.1 
GIPS of computational power and 3.4 GBytes memory access 
bandwidth, which are 13.6% and 10.3% of the system resources, 
respectively. Among others. 41.3% of instructions consumed are 
for LoaUStore operations and up to 80% memory bandwidth is 
spent on loading data. This statistics show that implementing FGS 



characterizes massive but simple data processing and huge memory 
access bandwidth. The required computational complexity for FGS 
is not an easy task for the system based on a general-purpose 
processor. In the next section, a thorough analysis of FGS coding 
flow will be given. Besides proposing hardware-oriented optimized 
algorithms, a dedicated hardwired core for FGS will also be 
extracted and validated to perform the FGS function more 
efficiently. With this hardwired accelerator for FGS, more than 
10% system resource can be saved. 

2.2 FGS Coding Flow Analysis 
Figure l(a) shows the detailed FGS coding flow in MPEG-4 VM. 
It can be roughly divided into block- and picture-level operations 
and a temporary buffer is used to bridge these two parts of 
operations, 
In block-level operations, SCAN, where zigzag scan and word-to- 
bit-plane conversion are performed, and Symbol Formation (SF) 
unit occupy the largest memory bandwidth and consume the largest 
amount of instructions and run-time. The reason is that a general- 
purpose processor is not suitable for the bit-level operations due to 
its word-based sequential processing propeny that cannot exploit 
the bit-level parallelism. In view of this, a dedicated hardware 
design for these block-level operations is more efficient in case 
FGS becomes a bottleneck for the whole system. 
In picture-level operations, picture-level MSB information must be 
obtained first. which results in an extra picture-level passing. 
When entering bit-plane coding, this operation will transform the 
stored symbols into variable-length hitstream moving through the 
same significant position of the picture. Actually, only the final 
bitstream picking and packing operations demand sequential 
passing order, from higher bit-plane to lower bit-plane. However, 
as to bitstream formation, namely. VLC table lookup can be 
performed in parallel at block-level, which implies rearranging this 
pan into a block-level core is possible and more efficient. 
As the proposed FGS coding flow is shown in Figure I (b), the 
block-level core can cover a great pan of work. With hardware- 
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(h) Proposed coding flow. 
Figure.1 FGS coding flow. 

oriented optimization approaches described in the following 
sections, the proposed hardwired block-level core can handle all 
the data-massive operations of FGS and leave only simple work to 
the encoding system. 
As to the temporary buffering data type, in MPEG-4 VM i t  is 
(RUN, EOP) symbols for each bit-plane that are stored in memory. 
From system viewpoint, the amount of occupied system bus for 
memory access is more critical than the allocated external memory 
size. The most suitable temporary buffering data type will be 
evaluated to improve the system performance in the next section. 

3. Hardware-oriented Approaches 

3.1 Global Maximum Keeping (GMK) 
In MPEG-4 VM implementation, it spends one extra picture-level 
pass to get the picture-level MSB information. However, the work 
of finding picture-level MSB can be performed in passing during 
block-level processing, that is, after finding out one block-level 
MSB, the picture-level MSB. which we define global maximum 
here, can be continually updated at the same time. Using this 
global maximum keeping method. the redundant picture-level pass 
can be saved and all the block-level MSB needn't be stored. 

3.2 Dynamic Bit-Plane Adaptation (DBPA) 
In FGS profile [I] ,  maximum four coded bit-planes for one frame 
are supported. It implies that only the information of the top four 
bit-planes for each block needs to he saved and it is sufficient to 
generate the final bitstream regardless of the picture-level MSB. 
This substantially reduces the required computational complexity 
and implementation cost. 
Refer to figure 2, DBPA functions as follows. Each block has 
maximum 11 bit-planes due to the dynamic range of the magnitude 
of the input DCT coefficients. Block-level MSB will be extracted 
first and GMK continually updates the picture-level MSB. Only 
the information of the top four bit-planes for each block will be 
dynamically kept according to the current picture-level MSB. Note 
that, the time GMK updates the picture-level MSB, which we call a 
MSB jump, means the blocks ahead it have the wrong picture-level 
MSB and the bit-plane level of the stored top four bit-planes needs 
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Figure2 Concept of DBPA. 
to be adjusted. So these block positions should be kept as well as 
the wrong picture-level MSB to aid the adjustment. However, after 
the picture-level MSB is found out sooner or later, the chosen top 
four bit-planes of the subsequent blocks will be aligned to the right 
position among the blocks. At this time some lower bit-plane 
information can be even replaced with zeros, which means there is 
no need to process these bit-planes. 

3.3 Coding Flow Reordering 
mere are three candidates to estimate the most proper temporary 
buffering type, including bit-plane raw data, (RUN, EOP) symbol, 
which is adopted in MPEG-4 VM. and partial bitstream. The bit- 
plane raw data arc just the residues obtained from taking the 
difference between DCT coefficients and the inverse quantized 
ones. However, proper packing should be carried out such that the 
data form independent bit-planes. As to partial bitstream, since 
each bit-plane in one block can perform VLC table lookup 
according to the significant position in that block regardless of 
picture-level MSB, this work can be advanced to perform at block- 
level to generate partial bitstream. And with GMK and DBPA, the 
final bitstream is generated by picking and packing the right partial 
bistreams. This coding flow reordering will store bitstream-level 
information of each block into buffer. Table 2 shows some 
comparisons between these two kinds of buffering types. As to the 
symbol-level, from implementation viewpoint, the performance is 
situated between the other two, so it is ignored here for briefness. 
As shown in the table, since the partial hitstream is formed through 
compressing the hit-plane raw data, the amount of data required to 
be stored is much less than the non-compressed one. However, 
note that if the bus bandwidth is 32 bit, the variable-length 
bitstream need to be packed into 32 bit units regardless of the truly 
bit-length of the bitstream and a header is needed to keep the 
information about it. Indeed, the amount of the reducing access 
bandwidth suffers from 32-bit packing and header insertion. As 
shown in table 2, average 81.55 bits are needed to coding a block 
and extra 32 bits are reserved for header. In spite of this, storing 
partial bitstream benefits the system performance by reducing the 
occupation of the memory access bandwidth to only 47% of non- 
compressed raw data. Besides, some required memory device for 
implementing these two methods, including local buffer and 
register. are listed also for comparing the total implementation cost. 
The most different between these two methods is that data before 
and after temporary buffer are belong to different data type. that is, 
residue words and bit-planes. When translating into bit-planes. the 
relation among a word is lost, for example. we have no idea about 

if a one in a bit-plane is the first one in a word. This impedes some 
bitstream coding operations, including sign coding and CBP 
coding, which all need the information of a one in the word. So 
extra picture-size tables are required to keep this important 
information. 7his validates the coding flow reordering to reduce 
the implementation cost. With coding flow reordering, sign bit 
adding can be performed in parallel when processing a word, 
multiple bit-planes. Some information, which we define pre-CBP, 
can be added into the partial bitstream header to aid the CBP 
coding. This pre-CBP information record if there exist any one in 
the upper bit-planes. 

3.4 Picture-level Processing 

As to generating the complete enhancement bitstream of FGS, it 
requires one more picture-level processing and from higher bit- 
plane to lower bit-plane to pack all the partial bitstream in order. 
All required information is generated in GMK unit so padal 
bitstream will be aligned in proper significant order. m e  required 
CBP information is also ready in the partial bitstream header to 
benefit the packing procedure. ?he picture-level processing is left 
simple and sequential in nature to be performed by the system. 
However, since the enhancement bitstream will be tailored to meet 
the users' conditions. this simple task of picking and packing 
partial bitstream can even be moved to serfer's side to generate the 
final bitstream according to the bit allocation plans. 

4. Implementation 
4.1 Proposed Architecture 
With GMK, DBPA and coding flow reordering as described in the 
previous section, a cost-effective hardware core for implementing 
FGS block-level operations is proposed and the architecture is 
shown in Figure 3. In such a block-level processing core, all 
operations for FGS are performed in each block independently 
following the raster scan order. First preprocessing unit takes the 
residues between DCT coefficients and inverse quantized ones and 
transforms them into separate magnitude and sign data. Note that 
the frequency weighting function of FGS is also performed at 
block-level to adjust the transmission priority of coefficient 
residues in one block. An additional bit-plane shift module can be 
included in the proposed block-level core to support frequency 
weighting. 'The DCT and inverse quantized coefficients are both 
provided by the system and sent in first 64 clock cycles while scan 
buffer is used to hold this data temporarily and then dumps the 
data out in zigzag scan order in the later 64 cycles according to the 
global counter. During the scan procedure, the MSB in one block 
is extracted and GMK unit will update the picture-level MSB and 
keep some necessary information at the same time. Then the DBPA 
multiplexer selects the top four bits and send them into four 
parallel run-length coders. The run-length coder is simply a FIFO 
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Figure 3. Proposed block-level processing core for FGS encoder. 

that dumps new (RUN,  EOP) symbol when another one is entering. 
There are four sets of subsystem working in parallel to generate 
partial hitstream, i.e. independent run-length coders, different VLC 
tables and bitstream packers, for each of the top four hit-planes. 
Finally, all the partial hitstreams will he stored in the panial 
hitstream buffers lo wait until the system bus is available. 
In summary. maximum four hit-planes are kept in trace to reduce 
the implementation complexity and four parallel hit-plane coders 
are adopted to exploit the bit-plane level parallelism 10 achieve the 
goal of hardware acceleration. GMK and DBPA algorithms are 
used to implement i t  with efficiency. Finally, partial hitstreams are 
generated to be stored in temporary buffer to minimize the 
occupation of the system bus for memory access. 

4.2 Implementation Results 
Table 3 shows the gate count synthesized a1 54 MHz and the 
required mcmary sire for the proposed FGS block-level processing 
core. Thcre are four identical BPC units that perform all hit., hit- 
plane- and bitstrcam- level operations in parallel. Since 4x32 bits 
arc allocated for one partial hitstream for one hit-plane, the 
required buffer size is small and is realized as registers. The 
proposed block-level core is optimized for the processing data type 
and to exploit the parallelism between them. 
When integrating the FGS block-level processing core into our 
previous-proposed Block Engine 161. which is responsible for the 
hase layer texture coding, the partial hitstreams for one MB can be 
generated within 1,000 cycles. So. our proposed hardware core can 
support FGS profile level S.  frame size 720x576. 30Hz, for real- 
time streaming application at 54 MHz. which demands that one 
MB should he finished in 1 ,111  cycles. Compared with software 
implcmcntation, this specification can he achieved at cost of I I 
GIPS which implies higher than I I GHz processor. Our proposed 
hardware core is a cost-effective solution to FGS implementation. 

5. Conclusions 

In this paper. a hardwired MPEG-4 FGS block-level processing 
cnre is proposed. Its required computation powcr in an encoding 
system is analyzed and several hardware-oriented approaches are 
discussed to achieve cost-effective implementation .The proposed 

Table 3. Implementation Results-Required gate count and 
. , .. . . .. . . . ., , ,. . 

hardware core can support FGS profile level 5 ,  frame size 
720x576, 30Hz. for real-time streaming application at 54 MHr. 
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