
HARDWARE-ORIENTED OPTIMIZATION AND BLOCK-LEVEL
ARCHITECTURE DESIGN FOR MPEG-4 FGS ENCODER

Chih- Wei Hsu, Yung-Chi Chang, Wei-Min Chao, and Liang-Gee Chen

D S P K Design Lab, Graduate Institute of Electronics Engineering,
Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan

[jeromn, watchman, hydra, lgchen] @video.ee.ntu.edu.tw

ABSTRACT
MPEG-4 Fine Granularity Scalability (FGS) provides bandwidth
adaptation and error resilience features for streaming applications.
In this paper. by estimating the required computational power for
FGS in a video encoding system, an efficient FGS implementation
method is exploited. With the proposed hardware-oriented
optimization approaches, a hardwired FGS block-level processing
core is proposed to provide a cost-effective solution to FGS
implementation. The proposed hardware core can support FGS
profile level 5 , frame size 720x516. 30Hz. for real-time streaming
applications at 54 MHz.

1. Introduction
Multimedia delivery over Internet is an emerging application that
needs lo serve numerous users over network using various access
media with different available bandwidth. In addition, suffering
from unavoidable packet loss. which results from the best-effon
nature for QoS of the Internet, bandwidth adaptation and error
resilience are two key techniques to stream multimedia data over a
range of bit rate on Internet. MPEG-4 Fine Granularity Scalability
(FGS) can easily provide these two features and is suitable for
streaming applications [11[21. To further improve visual quality of
FGS video, frequency weighting that uses different weighting for
different frequency components is provided [Z]. The streaming
content can be either pre-coded video or live video. Due to the
charactenstic of separate coding and transmission procedures for
FGS bitstream, it is easy to handle with the pre-coded video. The
encoding system needs not finish encoding in real-time but just
before the server to dispatch the coded bitstream upon users’
requests. With coded FGS bitstream, the required computational
power for server to perform rate allocation and adaptation is low.
However, as to streaming live video, the streaming system should
perform both coding and bitstream delivery in time. The required
computational power is huge for video encoding and further raised
when offering additional FGS function. There are many state-of-
the-art MPEG-4 encoderlcodec SOC chip to accelerate the
encoding procedures with softwarelhardware co-design and co-
optimization [31[41, which are ready for the real-time applications.
Dedicated FGS accelerating core should be also implemented for
specific streaming applications. Before FGS function is integrated
into the encoding system, the most efficient implementation
method for it should be exploited to achieve optimal system
performance with least implementation cost.
In this paper. the required computational power for FGS in a video
encoding system will be evaluated in section 2. Then detailed FGS
coding flow will also be analyzed and modified with
hardwardsoftware optimization in section 3 to adapt FGS function

0-7803~7761-31031$17.00 02003 IEEE 11-784

into encoding system more efficiently. Then a cost-effective block-
level hardware design for FGS encoder will be proposed in section
4.The conclusions will be drawn in section 5.

2. FGS Functional Descriptions
The basic idea of FGS is to code a video sequence into two layers.
One is the base layer whose bit-rate is set at the least available
bandwidth of the channel. Ideally, the base layer is received and
decoded completely at the decoder’s side to give the basic quality
of the coded video. Another one is the enhancement that is ended
to improve the video quality of the base layer. In FGS coding
scheme, to achieve the fine-grained scalability of the enhancement
layer, bit-plane coding method is used. With bit-plane coding, first
the residues between the DCT coefficients and the inverse
quantized ones of an 8x8 block are taken and scanned in zigzag
order. Then. instead of being coded word-by-word, these residues
are processed in bit-plane order, i.e. bits at the same significant
position form one bit-plane from the MSB of this block to the LSB.
In each bit-plane, only one and zero are left and run-length coding
is performed to form the (RUN, EOP) symbols. where RUN means
the number of consecutive zero before a one and EOP indicates the
last one of a bit-plane. These symbols are further VLC-coded and
finally packed into one enhancement bitstream from higher bit-
plane to lower bit-plane. So, this enhancement bitstream can be
decoded to recover the quantization error of the DCT coefficients
from MSB, which makes more contributions to recover error. to
LSB. Besides, it can be truncated at any point since this results in
only some data loss in lower bit-plane. It can be referred to [21 for
more details of the FGS functionality.

2.1 Profiling Results
FGS can be implemented using either software or dedicated
hardware. So. before adding FGS function into encoding system.
from system viewpoint, we must decide what k n d of
implementation is most suitable for FGS by estimating its required
computational power. Table 1 shows the instruction level profiling
of FGS in an MPEG-4 encoding system using MPEG-4 VM
software [SI. The profiling condition is for foreman sequence, CIF
format and 30 Hz and the profiling data can be divided into two
parts, one is the required instruction analysis and another is for
required memory bandwidth.
It is shown that when FGS function integrated into an MPEG-4
encoder targeting real-time applications, it consumes more than 2.1
GIPS of computational power and 3.4 GBytes memory access
bandwidth, which are 13.6% and 10.3% of the system resources,
respectively. Among others. 41.3% of instructions consumed are
for LoaUStore operations and up to 80% memory bandwidth is
spent on loading data. This statistics show that implementing FGS

characterizes massive but simple data processing and huge memory
access bandwidth. The required computational complexity for FGS
is not an easy task for the system based on a general-purpose
processor. In the next section, a thorough analysis of FGS coding
flow will be given. Besides proposing hardware-oriented optimized
algorithms, a dedicated hardwired core for FGS will also be
extracted and validated to perform the FGS function more
efficiently. With this hardwired accelerator for FGS, more than
10% system resource can be saved.

2.2 FGS Coding Flow Analysis
Figure l(a) shows the detailed FGS coding flow in MPEG-4 VM.
It can be roughly divided into block- and picture-level operations
and a temporary buffer is used to bridge these two parts of
operations,
In block-level operations, SCAN, where zigzag scan and word-to-
bit-plane conversion are performed, and Symbol Formation (SF)
unit occupy the largest memory bandwidth and consume the largest
amount of instructions and run-time. The reason is that a general-
purpose processor is not suitable for the bit-level operations due to
its word-based sequential processing propeny that cannot exploit
the bit-level parallelism. In view of this, a dedicated hardware
design for these block-level operations is more efficient in case
FGS becomes a bottleneck for the whole system.
In picture-level operations, picture-level MSB information must be
obtained first. which results in an extra picture-level passing.
When entering bit-plane coding, this operation will transform the
stored symbols into variable-length hitstream moving through the
same significant position of the picture. Actually, only the final
bitstream picking and packing operations demand sequential
passing order, from higher bit-plane to lower bit-plane. However,
as to bitstream formation, namely. VLC table lookup can be
performed in parallel at block-level, which implies rearranging this
pan into a block-level core is possible and more efficient.
As the proposed FGS coding flow is shown in Figure I (b), the
block-level core can cover a great pan of work. With hardware-

-%-
PUS I crncirv Panid BiLIlrcrm

(h) Proposed coding flow.
Figure.1 FGS coding flow.

oriented optimization approaches described in the following
sections, the proposed hardwired block-level core can handle all
the data-massive operations of FGS and leave only simple work to
the encoding system.
As to the temporary buffering data type, in MPEG-4 VM i t is
(RUN, EOP) symbols for each bit-plane that are stored in memory.
From system viewpoint, the amount of occupied system bus for
memory access is more critical than the allocated external memory
size. The most suitable temporary buffering data type will be
evaluated to improve the system performance in the next section.

3. Hardware-oriented Approaches

3.1 Global Maximum Keeping (GMK)
In MPEG-4 VM implementation, it spends one extra picture-level
pass to get the picture-level MSB information. However, the work
of finding picture-level MSB can be performed in passing during
block-level processing, that is, after finding out one block-level
MSB, the picture-level MSB. which we define global maximum
here, can be continually updated at the same time. Using this
global maximum keeping method. the redundant picture-level pass
can be saved and all the block-level MSB needn't be stored.

3.2 Dynamic Bit-Plane Adaptation (DBPA)
In FGS profile [I] , maximum four coded bit-planes for one frame
are supported. It implies that only the information of the top four
bit-planes for each block needs to he saved and it is sufficient to
generate the final bitstream regardless of the picture-level MSB.
This substantially reduces the required computational complexity
and implementation cost.
Refer to figure 2, DBPA functions as follows. Each block has
maximum 11 bit-planes due to the dynamic range of the magnitude
of the input DCT coefficients. Block-level MSB will be extracted
first and GMK continually updates the picture-level MSB. Only
the information of the top four bit-planes for each block will be
dynamically kept according to the current picture-level MSB. Note
that, the time GMK updates the picture-level MSB, which we call a
MSB jump, means the blocks ahead it have the wrong picture-level
MSB and the bit-plane level of the stored top four bit-planes needs

II-785

MSB & b1oc.k position

Figure2 Concept of DBPA.
to be adjusted. So these block positions should be kept as well as
the wrong picture-level MSB to aid the adjustment. However, after
the picture-level MSB is found out sooner or later, the chosen top
four bit-planes of the subsequent blocks will be aligned to the right
position among the blocks. At this time some lower bit-plane
information can be even replaced with zeros, which means there is
no need to process these bit-planes.

3.3 Coding Flow Reordering
mere are three candidates to estimate the most proper temporary
buffering type, including bit-plane raw data, (RUN, EOP) symbol,
which is adopted in MPEG-4 VM. and partial bitstream. The bit-
plane raw data arc just the residues obtained from taking the
difference between DCT coefficients and the inverse quantized
ones. However, proper packing should be carried out such that the
data form independent bit-planes. As to partial bitstream, since
each bit-plane in one block can perform VLC table lookup
according to the significant position in that block regardless of
picture-level MSB, this work can be advanced to perform at block-
level to generate partial bitstream. And with GMK and DBPA, the
final bitstream is generated by picking and packing the right partial
bistreams. This coding flow reordering will store bitstream-level
information of each block into buffer. Table 2 shows some
comparisons between these two kinds of buffering types. As to the
symbol-level, from implementation viewpoint, the performance is
situated between the other two, so it is ignored here for briefness.
As shown in the table, since the partial hitstream is formed through
compressing the hit-plane raw data, the amount of data required to
be stored is much less than the non-compressed one. However,
note that if the bus bandwidth is 32 bit, the variable-length
bitstream need to be packed into 32 bit units regardless of the truly
bit-length of the bitstream and a header is needed to keep the
information about it. Indeed, the amount of the reducing access
bandwidth suffers from 32-bit packing and header insertion. As
shown in table 2, average 81.55 bits are needed to coding a block
and extra 32 bits are reserved for header. In spite of this, storing
partial bitstream benefits the system performance by reducing the
occupation of the memory access bandwidth to only 47% of non-
compressed raw data. Besides, some required memory device for
implementing these two methods, including local buffer and
register. are listed also for comparing the total implementation cost.
The most different between these two methods is that data before
and after temporary buffer are belong to different data type. that is,
residue words and bit-planes. When translating into bit-planes. the
relation among a word is lost, for example. we have no idea about

if a one in a bit-plane is the first one in a word. This impedes some
bitstream coding operations, including sign coding and CBP
coding, which all need the information of a one in the word. So
extra picture-size tables are required to keep this important
information. 7his validates the coding flow reordering to reduce
the implementation cost. With coding flow reordering, sign bit
adding can be performed in parallel when processing a word,
multiple bit-planes. Some information, which we define pre-CBP,
can be added into the partial bitstream header to aid the CBP
coding. This pre-CBP information record if there exist any one in
the upper bit-planes.

3.4 Picture-level Processing

As to generating the complete enhancement bitstream of FGS, it
requires one more picture-level processing and from higher bit-
plane to lower bit-plane to pack all the partial bitstream in order.
All required information is generated in GMK unit so padal
bitstream will be aligned in proper significant order. m e required
CBP information is also ready in the partial bitstream header to
benefit the packing procedure. ?he picture-level processing is left
simple and sequential in nature to be performed by the system.
However, since the enhancement bitstream will be tailored to meet
the users' conditions. this simple task of picking and packing
partial bitstream can even be moved to serfer's side to generate the
final bitstream according to the bit allocation plans.

4. Implementation
4.1 Proposed Architecture
With GMK, DBPA and coding flow reordering as described in the
previous section, a cost-effective hardware core for implementing
FGS block-level operations is proposed and the architecture is
shown in Figure 3. In such a block-level processing core, all
operations for FGS are performed in each block independently
following the raster scan order. First preprocessing unit takes the
residues between DCT coefficients and inverse quantized ones and
transforms them into separate magnitude and sign data. Note that
the frequency weighting function of FGS is also performed at
block-level to adjust the transmission priority of coefficient
residues in one block. An additional bit-plane shift module can be
included in the proposed block-level core to support frequency
weighting. 'The DCT and inverse quantized coefficients are both
provided by the system and sent in first 64 clock cycles while scan
buffer is used to hold this data temporarily and then dumps the
data out in zigzag scan order in the later 64 cycles according to the
global counter. During the scan procedure, the MSB in one block
is extracted and GMK unit will update the picture-level MSB and
keep some necessary information at the same time. Then the DBPA
multiplexer selects the top four bits and send them into four
parallel run-length coders. The run-length coder is simply a FIFO

II-786

star np>
0.63 I 64-12, Global Counter: 7 bits

.'\
t

CUCtf.

Rivrprrlllcl ,ill,> ,,,,,,
",,~,W'.. *,,ai& ,,,,./ I

hilrlrclm p"kr

f
Figure 3. Proposed block-level processing core for FGS encoder.

that dumps new (RUN, EOP) symbol when another one is entering.
There are four sets of subsystem working in parallel to generate
partial hitstream, i.e. independent run-length coders, different VLC
tables and bitstream packers, for each of the top four hit-planes.
Finally, all the partial hitstreams will he stored in the panial
hitstream buffers lo wait until the system bus is available.
In summary. maximum four hit-planes are kept in trace to reduce
the implementation complexity and four parallel hit-plane coders
are adopted to exploit the bit-plane level parallelism 10 achieve the
goal of hardware acceleration. GMK and DBPA algorithms are
used to implement i t with efficiency. Finally, partial hitstreams are
generated to be stored in temporary buffer to minimize the
occupation of the system bus for memory access.

4.2 Implementation Results
Table 3 shows the gate count synthesized a1 54 MHz and the
required mcmary sire for the proposed FGS block-level processing
core. Thcre are four identical BPC units that perform all hit., hit-
plane- and bitstrcam- level operations in parallel. Since 4x32 bits
arc allocated for one partial hitstream for one hit-plane, the
required buffer size is small and is realized as registers. The
proposed block-level core is optimized for the processing data type
and to exploit the parallelism between them.
When integrating the FGS block-level processing core into our
previous-proposed Block Engine 161. which is responsible for the
hase layer texture coding, the partial hitstreams for one MB can be
generated within 1,000 cycles. So. our proposed hardware core can
support FGS profile level S. frame size 720x576. 30Hz, for real-
time streaming application at 54 MHz. which demands that one
MB should he finished in 1 ,111 cycles. Compared with software
implcmcntation, this specification can he achieved at cost of I I
GIPS which implies higher than I I GHz processor. Our proposed
hardware core is a cost-effective solution to FGS implementation.

5. Conclusions

In this paper. a hardwired MPEG-4 FGS block-level processing
cnre is proposed. Its required computation powcr in an encoding
system is analyzed and several hardware-oriented approaches are
discussed to achieve cost-effective implementation .The proposed

Table 3. Implementation Results-Required gate count and
. ,, , ,. .

hardware core can support FGS profile level 5 , frame size
720x576, 30Hz. for real-time streaming application at 54 MHr.

REFERENCES
[I] ISO/IEC 14496-2:1999/FDAM4. "Coding of Audio-visual

Objects - Part 2: Visual, Amendment 4: Streaming Video
Profile." Pisa, Jan. 2001.

[21 W. Li. "Overview of Fine Granularity Scalability in MPEG-4
Video Standard," IEEE Trans. Cir-cuirs Sysr. Video Teclml . .
vol. I I , pp. 301-317, Mar. 2001.

[31 M. Takahashi et al.. "A 60-MHz 240-mW MPEG-4
Videophone LSI with 16-Mb Embedded DRAM." IEEE
Journal of Solid-Sfure Circuir. vol. 35. pp.1713-17121. Nov.
2000

[41 H. Nakayama et al.. "An MPEG-4 Video LSI with an Error-
Resilient Codec Core Based on a Fast Motion Estimation
Algorithm." IEEE lnrerndionol Solid-Sfare Circuifs
Conference. Sec. 22. Feb. 2002.

[SI MPEG-4 - MoMuSys - FPDAMI (Version 2) 1.0, Dec. 2002.
161 C. W. Hsu. W. M. Chao, Y. C. Chang, and L. G. Chen.

'Texture Coder Design of MPEG-4 Video by Using
Interleaving Schedule." IEEE Internarional Conference on
Multimedia and Expo (ICME) , Aug. 2002.

U-787

